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ABSTRACT
XCS is a flexible system for data mining due to its ability
to deal with environmental changes, learn online with little
prior knowledge and evolve accurate and maximally general
classifiers. In this paper, we propose DXCS which is an
XCS-based distributed data mining system. A MDL metric
is proposed to quantify and analyze network load, and study
the balance between network load and classifier accuracy in
the presence of noise. The DXCS system shows promising
results.

Categories and Subject Descriptors: I.2.6 [Learning]:
Knowledge Acquisition.

General Terms: Algorithms, Performance, Measurement.

Keywords: Learning Classifier System, XCS, MDL, Dis-
tributed Data Mining.

1. INTRODUCTION
In the last few decades, the amount of data in organiza-

tions has been doubling every few months. However, ex-
tracting useful information from massive databases can be a
tedious, time consuming and expensive exercise. John Nais-
bitt stated that we are drowning in information, but starving
for knowledge [23]. Data mining, the process of discovering
novel patterns in databases [13], assists companies and or-
ganizations to discover the tacit knowledge hidden in the
overwhelming amount of data.
Patterns in a database can be represented in different

forms such as neural networks, decision trees, or rule-based
systems. It is easier to understand patterns represented us-
ing the latter representation than those for example repre-
sented using a neural network. Once a rule-based system is
learnt, one can use it to classify new data as they arrive.
Classifier systems and genetics based machine learning

(GBML) techniques have been successful in data mining
problems due to their ability to do global search [14] and
learn with little prior knowledge [16]. Classifier systems fall
in two categories: Pittsburgh and Michigan style classifier
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systems. In the former, an individual in evolution is a com-
plete set of rules while in the latter, the whole population is
a complete set of rules and an individual is only a single rule.
XCS [25] is the current state-of-the-art GBML technique and
is widely accepted as one of the most reliable Michigan-style
learning classifier system for data mining. The reasons for
the robust performance of XCS are: it is an online-learner,
the fitness is based on the accuracy of the prediction re-
ward, and it is able to evolve rules by interacting with the
environment [1, 9].
Wilson [26] has shown that the evolved rules of XCS are

accurate and maximally general in which the patterns of
interest are easily recognized. Moreover, XCS maintains a
complete action map which is able to adapt quicker to a
change in the environment because it only has to relearn
the quality of the rule, not the rule itself [4]. Other papers
have shown that XCS performs better than other machine
learning algorithms such as C4.5 [3, 12].
Nowadays, most databases in large companies are distrib-

uted. With the large amount of data generated at each lo-
cation, it is not possible to transfer all the data to a central
location to do data mining. In many cases, it is not feasible
to transfer data from distributed sites into the centralized
database due to security issues, limited network bandwidth,
or even because of the internal policies for some organiza-
tions. Distributed Data Mining (DDM) is an extension of
data mining techniques in distributed environments. Even
if the data is not physically distributed, DDM can be used
effectively in speeding up the data mining process. However,
the primary purpose of DDM is to discover and combine use-
ful knowledge from databases that are physically distributed
across multiple sites [24].
Many researchers have been extending traditional data

mining approaches to distributed environments. However,
most of the traditional data mining methods are off-line
techniques and thus require initial time for training. Also,
they take time to recover from changes in the environment.
In this paper, we will discuss an extension of the XCS ap-
proach [25] for DDM.
We will adopt an ensemble method called knowledge prob-

ing [18, 19] in order to build the global view of the distrib-
uted environment.
The effect of noise is a major issue in data mining. There-

fore, we also investigate the system’s performance in the
presence of different noise levels. We also compare our per-
formance against the performance of a centralized XCS sys-
tem with different levels of noise.
The paper is structured as follows. The next section pro-
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vides a brief overview of DDM. Section 3 introduces XCS
then the distributed system is introduced in Section 4. The
data transmission in the network is investigated in Section
5. The experiments and results are discussed in Sections
6 and 7 respectively. Conclusions and directions for future
work are presented in Section 8.

2. RELATED WORK
DDM is a relatively new area but has been receiving much

attention, especially in distributed environments where trust
between sites is not always complete or mutual [20]. In many
applications, data are privacy-sensitive, so that centralizing
the data is usually not acceptable [15]. Therefore, DDM
technology needs to be adopted in these applications to re-
duce the transmission of raw data and thus protect raw data.
Data in DDM can be divided into two categories: ho-

mogeneous and heterogeneous. In homogeneous DDM, the
databases located at different sites have the same attributes
in the same format, while in heterogeneous DDM, the at-
tributes at each site are different or in different format. The
focus of this paper is on homogeneous DDM.
In homogeneous data, a large fraction of DDM approaches

focuses on centralized ensemble-based methods [22], which
first form local models at the local sites and then combine
these models at the centralized site. For example, a com-
pany may have different branches. Each local model rep-
resents an independent data mining for each branch, then
the central office of the company combines the models sent
by each branch to gain an overall view of the company as
a whole. Giannella et al [15] state two main advantages of
DDM using ensembles. The first advantage can be obvi-
ously seen when the local model is much smaller than the
local data: sending only the model thus reduces the load on
the network and the network bandwidth requirement. The
second one is that sharing only the model, instead of the
data, gains reasonable security for some organizations since
it overcomes issues of privacy.
Breiman [6] proposed bagging to aggregate models. The

bagging approach was initially used in [5] to increase the
accuracy of a learning algorithm by averaging the outputs
from different models generated with different data subsets
(not necessarily distinct).
Chan and Stolfo [11] introduced another approach for

combining models called meta-learning. In this approach,
each local site may employ a different inductive learning al-
gorithm for learning its local model. A meta-classifier is
trained using data generated by the local models. This
process is applied recursively to produce an arbiter tree,
which is a hierarchy of meta-classifiers. Meta-learning has
been used for fraud detection in the banking domain.
An alternative to meta-learning is the knowledge prob-

ing method developed by Guo and Sutiwaraphun [18]. This
method is similar to the meta-learning but it does not build
an arbiter tree. Instead, one descriptive model is generated
from the predictions of local models from a distributed en-
vironment.
Both meta-learning and knowledge probing methods were

applied to traditional inductive learning algorithms such as
decision tree learning: ID3, CART, C4.5 ; memory-based
learning: WPEBLS; Bayesian learner based on conditional
probabilities: BAYES, etc [19, 24]. These approaches are
efficient and effective. However, they are normally used
as off-line learning mechanisms, where the training of the

model needs to be completed before one can use the model
for mining. Moreover, the model structure can be sensitive
to small modifications in the data.
Evolutionary algorithms are natural candidates for ensem-

ble learning approaches because they can adapt quickly to
changes in the environment. Several researchers are work-
ing on applying evolutionary algorithms for ensemble learn-
ing [17, 21]. However, in traditional ensemble learning, the
members of the ensemble are usually trained on the same
datasets. Moreover, the training is usually done in batch
off-line mode. A more specific implementation of classifier
systems for distributed environments was examined in [7],
where Bull et al developed a distributed control system for
traffic signal. The system simulates the distributed system
where each traffic light is operated by a classifier system and
the time needed for an object to travel is investigated.
However, the previous studies were not focused in partic-

ular on distributed data mining. In this paper, we propose
the evolutionary based online-learning system called XCS,
in conjunction with the knowledge probing technique, for
DDM. XCS is a genetic based machine learning algorithm
that applies a reinforcement learning (RL) scheme. Thus
much of its theory is inherited from the RL literature. The
following section gives a brief overview of XCS.

3. XCS DESCRIPTION
A population in XCS is a collection of rules or classifiers,

in which each classifier consists of two components: Condi-
tion C and Action A. Both the Condition and Action parts
are implemented in a binary representation with the use of
wildcards or don’t care symbol in the Condition as a gen-
eralization mechanism. XCS is able to handle both single-
and multiple-step tasks, but this paper focuses on single-step
tasks only.
Each classifier is associated with three main parameters

as follows:

• Prediction p: an average of the payoff received when
the action associated with the classifier is chosen.

• Prediction error ε: a measure of the error in the pre-
diction parameter.

• Fitness F : an inverse function of the prediction error
- the lower the prediction error, the higher the fitness.

A classifier in XCS is a macro–classifier, which contains a
distinct combination of the Condition and Action parts in
the population. Whenever a new classifier is introduced, the
population is scanned to see if the new classifier already ex-
ists. If so, the new classifier is not added to the population,
but a numerosity parameter of its copy in the population
is incremented by one; otherwise, the new classifier is added
to the population and its numerosity parameter set to 1.
Given an input, the match set [M ] is formed as a collection

of classifiers in the population whose conditions match the
input. The system then forms a system prediction set [P ]
for each action that appears in [M ] using a fitness–weighted
average of the predictions. The action with the largest pre-
diction is selected and exported to the environment. The
action set [A] is then formed of the classifiers in [M ] that
have the selected action.
XCS is an accuracy–based GBML, in which a new fitness

is measured based on the accuracy of the classifier instead of
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the reward itself from the environment. After receiving the
reward R from the environment, XCS updates the values of
prediction p, prediction error ε, and fitness F parameters of
each classifier appeared in the current action set [A].
XCS applies GA for introducing a new rule into the pop-

ulation. During the selection process, two parents from the
action set [A] are selected with probability proportional to
their fitness. Two offspring are generated by reproducing,
crossing–over, and mutating the parents. Parents continue
to stay in the population competing with their offsprings. If
the population size is less than a certain number, offsprings
are inserted into the population; otherwise, two of the most
inaccurate classifiers are deleted from the population before
the offspring can be inserted.

4. THE DXCS FRAMEWORK
In this section we describe the main features of our pro-

posed DXCS system. The system consists of a number of
clients and a server. A client is placed at each distributed
site and is responsible for gathering local knowledge and
transferring information back to the server. The server com-
bines the information from the clients to form a descriptive
model for the global environment.

4.1 Distributed Sites
Each client has a complete XCS that is trained indepen-

dently using the local database. The population of XCS
starts from an empty set and keeps evolving during the train-
ing. A training instance is input to the local XCS, which
will choose a suitable output. The output from XCS is then
compared against the real class of that input instance. If
the system predicts correctly, that training instance is dis-
carded; otherwise, it is kept in a memory so that it gets
transferred to the server at a later stage.
The client’s models are then sent to the server to be aggre-

gated. The server has its own XCS. For training the server,
each client sends also a small sample of its local data in
addition to its own misclassified cases.
The transmission of information between the clients and

the server consists of:

• The most updated rules - population of each
client’s XCS: The XCS population is the collection
of rules, which take the form of a set of condition →
class. Each rule is also associated with several pa-
rameters. Therefore, the rules and their parameters
represent the complete view of the client of the local
data to the server.

There are two possibilities for sending the local XCS
model to the server. The first is by sending the whole
model. The second is by sending a partial model only.
The problem with the second is to decide which infor-
mation to send and which not to send. The trade–off
between the performance of the server and the data
transferred to the server will be discussed later in this
paper.

• Misclassified instances. Any training instances which
were misclassified by the local models are sent also to
the server. These instances are used to train XCS at
the server so that the gate is trained to deal with diffi-
cult problems. Because the population starts from an
empty set so that it is totally inexperienced, we can

expect that the misclassified instances are reduced as
training proceeds. The more training the model re-
ceives the more it becomes accurate and thus the less
misclassified instances get sent to the server.

• Unused training instances. The misclassified in-
stances generated at the clients may have been pro-
duced because of noise in the data. Hence, sending
the misclassified instances alone to train the server
may actually cause problems for the server. There-
fore, we also send a few instances not used for training
at the clients to the server. The unused instances and
the misclassified instances from all clients generate the
training set for the server.

4.2 Server Site
The server holds copies of all clients’ models, then trains

a gate using another XCS. The server combines the misclas-
sified and untrained instances from clients and uses them as
a training set.
After receiving the updated models from all clients, the

server applies the knowledge probing approach [18] to com-
bine the local models. The key idea of this approach is
to derive a descriptive model using the output of the local
models. All training data received by the server are used as
inputs for all copies of local models available at the server,
then the server trains an XCS to learn the mapping be-
tween the output of these local models and the target class.
In other words, the training instances for the server’s XCS
are created online at the server by all local models. In or-
der to reduce confusion in the rest of this paper, we call
the samples for training XCS at the server as the ensemble
training set and the training samples get transferred from
local clients to the server as the server training set. Each
server’s training instance is inserted to each local XCS and
the class exported out of the model becomes an attribute of
the ensemble training instance. Figure 1 shows the architec-
ture of the server and the process to create a new ensemble
instance.

011:1

1
10

101100:1101100:1101100:1

Model
Local

Model
Local

Model
Local

Model
Ensemble

XCS

Figure 1: Server architecture with 3 local models.
101100 is a server training instance to input into
each local model. 1 is a target class associated with
that training sample. Outputs from local models are
0; 1; 1. Thus 011 : 1 is an ensemble training instance.

The algorithm at the server can be described as follows:
Inputs:
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• A set T of n server training instances

T = {(t1, c1); (t2, c2); ..; (tn, cn)} where t is a training
instance and c is an associated class.

• A set L of m local XCS models L = {l1, l2, .., lm}
• A learning algorithm XCS, which provides the descrip-
tive output and represents the global view of the data-
base.

Prediction Phase: Obtain outputs from each model in
L for each data item in T and form an ensemble training
instances. The outputs of the nth instance tn from set L
models are a set On: On = {on1, on2, .., onm}. The set O
consists of the ensemble training instances for XCS O =
{O1, O2, ..On}. The new server training set becomes S =
{(O1, c1); (O2, c2); ...; (On, cn)}

Learning Phase: Learning from data entries in the server
training set S, L∗ = XCS{(O1, c1); (O2, c2); ...; (On, cn)}

Output: descriptive model L* obtained from the learning
phase.

5. FORMALIZING THE DATA
TRANSMISSION

The complexity of the data transmitted between the clients
and the server can be estimated by the MDL principle, a for-
mula used to evaluate the complexity and accuracy of the
model in terms of data compression. We modify the MDL
formula discussed by Bacardit [2] to our system. In Bac-
ardit’s system, the sender and the receiver exchange train-
ing examples in the same order because each of them have
identical copies of the data. Therefore, all they need to ex-
change is the set of indexes. However, this is not the case in
distributed data mining, where the data actually travel from
the clients to server. Hence, we updated the MDL formula
by Bacardit to accommodate the specific features of DDM.
The data needed for the transmission between the client

and the server includes the model, misclassified samples,
and training samples. Therefore, the cost of transmission
is equivalent to the number of bits needed to encode the
model (theory bits) plus misclassified and training samples
(exception bits).

MDL = theory bits + exception bits

The length of the theory bits (TL) is the length of classi-
fiers travelling to the server. The classifiers have a common
structure: Condition −→ Action and therefore their lengths
are defined as follows:

TL =

nrX

i=1

(TLi) +
nrX

i=1

(CLi)

Where nr is the number of rules of the model; TLi and CLi

are the length of condition and class respectively. They can
be estimated as follows:

TLi = nb

CLi = log2(nc)

where nb is the number of bits required to encode a complete
set of conditions and nc is the cardinality of the set of pos-
sible classes. For example, in the 20-multiplexer problem,
nc = 2 while nb = log2(3

20) since we have an alphabet of 3

symbols {0, 1,#} to encode 20 attributes corresponding to
the 320 instances. Therefore, the theory bits are estimated
as:

TL = nr(nb+ log2(nc))

Similarly, the exception part of the MDL principle (EL) is
estimated as follows:

EL = (nm+ nu)(na+ log2(nc))

where nm is the number of misclassified samples, nu is the
number of unused training samples at the clients and na is
the number of bits required to encode a training example.
Thus, the length of data sent from one client to its server

is:

MDL = (nr)(nb)+(nm+nu)(na)+(nr+nm+nu)(log2(nc))

6. EXPERIMENTS

6.1 Systems Setup
Two algorithms are investigated in a simulated distrib-

uted environment with two clients and one server. The first
algorithm is our proposed DXCS and the second one is a
centralized XCS. The centralized XCS system is equivalent
to having one XCS in the server and the clients keep sending
all local data to the server.
A complete enumeration of the 20-multiplexer problem is

used as the dataset. The multiplexer is widely used in the
literature of learning classifiers due to its interesting func-
tion properties [8]. The data set is divided into two non-
overlapping sets for training and testing. The training set
is then divided into two non-overlapping sets for the two
clients. The testing set is used for testing at the server.
We compare the performance of DXCS against the per-

formance of centralized XCS with different levels of noise.
Three levels of noise are used in the comparison: 0.00 (noise
free), 0.10, and 0.20. The noise is incorporated in the input
attributes by generating a random number between 0 and
1 according to a uniform distribution for each of the input
bits. If the random number is less than or equal to the noise
level, the corresponding input is flipped.
In the DXCS version, each XCS at each client is trained

online using the noisy training sets. This means that every
data instance is presented only once to each local XCS.
Transmission between the client and the server occurs using
a fixed window. We call the training of each local XCS using
each window an epoch. After each epoch, the clients send
their updated model, misclassified cases, and server train-
ing instances, to the server. The system at the server is
trained with the incoming models and data from all clients
and tested with the testing set of that epoch. A similar
process is followed for the centralized XCS system, where all
data (since there is no local learning) get transmitted from
the clients to the server. For each noise level, 30 repeats are
carried out by varying the noise in the data.
The testing set for each epoch contains 40 instances. The

training size is 120 instances (changed later to 1020 in an
experiment to learn about the effect of epoch size on sys-
tem performance and traffic load). One hundred instances
(or 1000) are used to train the client; the other nu = 20
instances are passed to the server for server training.
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6.2 Parameters Setup
The DXCS is setup with two clients: client 0 and client 1.

The default parameters [10] for XCS at the clients are chosen
as follows: maximum population size N = 2000; tolerance
error in prediction error ε0 = 10; learning rate for F , p, ε
is β = 0.2; α = 0.1; the subsumption threshold θsub = 20;
the probability of using a # in one attribute in covering
process P# = 0.8; mutation rate is 0.01; one point crossover
with the crossover rate 1.0; θGA (threshold for GA occurs
for the average time since last GA of classifiers in [A]) is 25;
tournament selection with tournament sizes proportional to
the current action set size with PTNM = 0.4. The default
parameters for XCS at the server are almost similar to the
ones setup for XCS at clients except for the population size
N = 100 and P# = 0.3 due to the smaller size of the search
space. The centralized XCS is setup by the same parameter
values of XCS used at the clients of DXCS.
Each XCS starts with an empty population at the ini-

tial step. The covering process occurs at the beginning to
introduce new classifiers. The initial value of parameters
associated with the new classifiers are set as follows: the
fitness F is 0.01; prediction p is 10.0; and prediction error ε
is 1.0. During the reward feedback process, the correct clas-
sification results in the payoff of 1000 from the environment
while the incorrect one receives the payoff of 0.

7. RESULTS AND DISCUSSION

7.1 DXCS compared to Centralized XCS
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Figure 2: Training and testing performance of the
server of DXCS and centralized XCS - Noise Free

In the first experiment, we consider a noise-free environ-
ment. Figure 2 shows the training and testing performance
at the server of DXCS and the centralized XCS in terms
of the accuracy. The results showed in this figure as well
as other figures in this paper are averaged of 30 runs. We

visualize the average performance over an entire epoch over
time. It is important to emphasize here that the data in
each epoch are non-overlapping and training is done in an
online mode.
The training accuracy of DXCS is almost as good as the

training accuracy of the centralized XCS. During testing,
DXCS seems to generalize slower than the centralized XCS
at the start of the time interval. This behavior is expected
since DXCS needs more time in the beginning to combine
correctly the models from the clients. However, with time
the testing performance of DXCS achieves the same level as
the centralized XCS.
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Figure 3: Data transmission from one client to
server - Noise Free

In Figure 3 we plot the MDL values over time to measure
the data transmission between the clients and the server af-
ter each epoch. Because we start with an empty population,
the MDL value is high at the start. The covering technique
is invoked so often, creating new classifiers to match each
of the previously unseen data. During this stage, which we
will call the heating-up stage, the population is full of inac-
curate macro-classifiers and many misclassified instances are
sent to the server. As training proceeds, the fitness pressure
of XCS pushes its population towards accurate and general
classifiers. There are fewer misclassified instances, and the
model becomes smaller as the system discards inaccurate
and specific classifiers. After about 500 generations, MDL
seems more stable.
Overall, the results show that DXCS is very competitive

when compared with the centralized XCS in a noise free
environment. Data transmission in DXCS is high to start
with, but stabilizes rapidly.

7.2 Effect of Epoch Size
We have shown that data transmission in DXCS decreases

over time. However, if the epoch size is small, we will need to
send the model more frequently. In addition, the size of the
data used to train the model in each epoch may actually
be smaller when compared to the size of the model itself.
Therefore, it may sound as though there is not any real
saving in terms of network load.
In this subsection, we decided to increase the epoch size;

thus, more data is used to train each client before the model
get sent to the server. In this way, the model size would
be smaller than the size of the data used, and we can also
estimate the effect of the epoch size on the performance of
the server.
Figure 4 depicts the training and testing performance of

DXCS and centralized XCS when the epoch size is increased
from 120 to 1020. The training accuracy of DXCS is almost
as good as the centralized XCS. The two curves may look
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Figure 4: Epoch’s size 1000 - Training and testing
performance of the server of DXCS and centralized
XCS - Noise Free

smoother than the corresponding ones with epoch size of 120
because we now have less number of epochs and we average
over more data. The real differences are not much when we
inspected the data. In terms of generalization, however, it
seems that both the decentralized and centralized versions
improved their generalization when the epoch size increase.
This is logical since each model is exposed to more data
before it is sent to the server, allowing it to learn better and
improve its generalization.
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Figure 5: Epoch’s size 1000 - Data transmission from
one client to server - Noise Free

Figure 5 shows the MDL of both DXCS and centralized
XCS with the new epoch size. Since centralized XCS sends
a constant amount of data to the server (as we assume data
arrives at the client and is passed onto the server at a con-
stant rate), its curve is a horizontal line. Data transmis-
sion in DXCS quickly drops below that line, and settles at
less than half the data transmission for the centralized XCS.
The results show that an increase in the epoch size improves
generalization and reduces data transmission. However, we
cannot generalize these findings to other problems.

Increasing the epoch size means the server is updated less
frequently, delaying its response to changes in the environ-
ment. The trade-off between accuracy, data transmission,
and up-to-date server will vary depending on the nature of
the problem we are dealing with.

7.3 Effect of Noise
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Figure 6: Training and testing performance of the
server of DXCS and centralized XCS - Noise 0.10
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Figure 7: Training and testing performance of the
server of DXCS and centralized XCS - Noise 0.20
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Figure 8: Training performance of the client of
DXCS - Noise 0.00, 0.10, 0.20

This section will examine the effect of a Gaussian noise
added to the training set. We observe that when noise is
small (noise = 0.10) (Figure 6) the performance of DXCS
is acceptable compared to centralized XCS . However, when
the noise level is high (noise = 0.20), centralized XCS defi-
nitely shows better performance than DXCS in Figure 7. It
can be explained by viewing the performance of each client
of DXCS in Figure 8. When noise is increased, learning
time required for XCS increases. Since the test sets are un-
changed, the performance of XCS is decreased. Centralized
XCS is always trained with twice the data as one client of
DXCS receives. As a result, centralized XCS learns quicker
than any of the clients could. Since XCS at the clients has
not learnt enough, the performance of the server is inferior
to the corresponding performance of the centralized XCS.
Data transmission, Figure 9, to the server also increases

as the noise increases. This reflects the load resultant from
transferring more misclassified instances as well as an in-
crease in the size of the model.
Overall, the performance of DXCS is competitive to the

centralized XCS when the noise level is small. When we
increase the level of noise in the data, DXCS needs more
time to recover.
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Figure 9: Data transmission from the client to server
- Noise 0.00, 0.10, 0.20

8. CONCLUSION
This paper has introduced DXCS, an extension of XCS for

distributed data mining. In order to validate DXCS, we have
compared the system with a centralized XCS. We also exam-
ined the effect of noise and epoch size on the system’s per-
formance. The results reveal that DXCS is competitive as a
distributed data mining system. Moreover, DXCS would be
favored as the epoch size increases.
In our future work, we will be looking at three issues.

First, the case where clients send only partial models. There
are different ways to transmit partial models, which will im-
prove more the time and bandwidth requirement for data
travelling to the server. Second, we will also look into how
the performance and traffic load of the system vary as we
increase the number of clients. Finally we will look at the
issue of improving the generalization of the server. In the
current paper, the inferior generalization of the server as
compared to the centralized XCS can be attributed to the
gate we use at the server level. Since the gate is simply
deciding between the decision of each client, its generaliza-
tion could be improved if we allow it also to encode some
of the data directly or if we improve the knowledge fusion
procedure.
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[3] E. Bernadó, X. Llorà, and J. M. Garrell. XCS and
GALE: a Comparative Study of Two Learning
Classifier Systems with Six Other Learning
Algorithms on Classification Tasks. In Proceedings of
the 4th International Workshop on Learning Classifier
Systems (IWLCS-2001), pages 337–341, 2001. Short
version published in Genetic and Evolutionary
Compution Conference (GECCO2001).

[4] E. Bernado-Mansilla and J. Garrell-Guiu.
Accuracy-based learning classifier systems: Models,
analysis and applications to classification tasks.
Evolutionary Computation, 11(3):209–238, 2003.

[5] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[6] L. Breiman. Pasting small votes for classification in
large databases and on-line. Machine Learning,
36(1–2):85–103, 1999.

[7] L. Bull, J. Sha’Aban, A. Tomlinson, P. Addison, and
B. Heydecker. Towards distributed adaptive control
for road traffic junction signals using learning classifier
systems. In L. Bull, editor, Applications of Learning
Classifier Systems, pages 276–299. Springer-Verlag,
2004.

[8] M. V. Butz. Rule-Based Evolutionary Online Learning
Systems: Learning Bounds, Classification, and
Prediction. PhD thesis, University of Illinois at
Urbana-Champaign, 2004.

[9] M. V. Butz, D. E. Goldberg, and K. Tharakunnel.
Analysis and improvement of fitness exploitation in
XCS: Bounding models, tournament selection, and
bilateral accuracy. Evolutionary Computation,
11(3):239–277, 2003.

[10] M. V. Butz and S. W. Wilson. An algorithmic
description of XCS. In IWLCS ’00: Revised Papers
from the Third International Workshop on Advances
in Learning Classifier Systems, pages 253–272.
Springer-Verlag, 2001.

[11] P. K. Chan and S. J. Stolfo. Toward parallel and
distributed learning by meta-learning. In Working
Notes AAAI Work. Knowledge Discovery in
Databases, pages 227–240, Washington, DC, 1993.

[12] P. W. Dixon, D. Corne, and M. J. Oates. A
preliminary investigation of modified XCS as a generic
data mining tool. In IWLCS ’01: Revised Papers from
the 4th International Workshop on Advances in
Learning Classifier Systems, pages 133–150.
Springer-Verlag, 2002.

[13] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy. From data mining to knowledge
discovery: An overview. In Advances in Knowledge
Discovery and Data Mining, pages 1–36. The MIT
Press, 1996.

[14] A. A. Freitas. A survey of evolutionary algorithms for
data mining and knowledge discovery. Advances in
evolutionary computing: theory and applications,
pages 819–845, 2003.

[15] C. Giannella, R. Bhargava, and H. Kargupta.
Multi-agent systems and distributed data mining. In
Cooperative Information Agents VIII: 8th
International Workshop, CIA 2004, pages 1–15,
Erfurt, Germany, 2004.

[16] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning.
Addision-Wesley Publishing Company, INC., 1989.

[17] C. Guerra-Salcedo and D. Whitley. Genetic approach
to feature selection for ensemble creation. In
GECCO’99, pages 236–243, 1999.

[18] Y. Guo, S. Rueger, J. Sutiwaraphun, and
J. Forbes-Millott. Meta-learning for parallel data
mining. In Proceedings of the Seventh Parallel
Computing Worksop, 1997.

[19] Y. Guo and J. Sutiwaraphun. Distributed
classification with knowledge probing. In Advances in
Distributed and Parallel Knowledge Discovery, pages
115–132. AAAI Press/ The MIT Press, 2000.

[20] C. Jones, J. Hall, and J. Hale. Secure distributed
database mining: Principles of design. In Advances in
Distributed and Parallel Knowledge Discovery, pages
277–294. The MIT Press, 2000.

[21] K. Jong, J. Mary, A. Cornuejols, E. Marchiori, and
M. Sebag. Ensemble feature ranking. In Proceeding
ECML-PKDD’04, Pisa, Italy, 2004. IEEE.

[22] L. I. Kuncheva. Combining Pattern Classifiers:
Methods and Algorithms. Wiley, 2004.

[23] J. Naisbitt. Megatrends : Ten New Directions
Transforming Our Lives. Warner Books; Rei edition,
1988.

[24] A. L. Prodromidis, P. K. Chan, and S. J. Stolfo.
Meta-learning in distributed data mining systems:
Issues and approaches. In Advances in Distributed and
Parallel Knowledge Discovery, pages 81–114. The MIT
Press, 2000.

[25] S. W. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[26] S. W. Wilson. Generalization in the XCS classifier
system. In J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, and R. Riolo, editors, Genetic
Programming 1998: Proceedings of the Third Annual
Conference, pages 665–674, University of Wisconsin,
Madison, Wisconsin, USA, 22-25 1998. Morgan
Kaufmann.

1890


